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Abstract—Subjective logic (SL) is an effective tool to manage
and update beliefs over a set of mutually exclusive assertions.
The method to update subjective beliefs from direct observations
of assertions is well understood. Recent work has incorporated
the SL framework to derive the belief update equations for
partial observations where the measurements are only statistically
related to the assertions. This work further expands the notion of
SL to consider uncertainty in the underlying statistical relation-
ship between measurements and assertions. In other words, new
methods are derived for SL that incorporate uncertainty in the
reported likelihood of the assertions. Simulations demonstrate
the utility of the new likelihood uncertainty aware belief update
methods.

I. INTRODUCTION

This work investigates methods to compensate for uncertain

observations in updating subjective logic (SL) beliefs. SL

has emerged as a rigorous method to represent and reason

over human generated or automated beliefs in face of uncer-

tainty [1]. Applications of SL include trust management [2],

Bayesian networks [3], and fusion [1], [4]. In short, SL

provides effective tools to manage and combine beliefs over a

set of mutually exclusive assertions from multiple human or

computer agents. At a given point in time, an agent’s belief

is the result of a prior belief and a set of observations. The

uncertainty of the belief represents the reliance on the prior,

and the uncertainty decreases as the agent incorporates more

observations to form the beliefs over the set of assertions.

To our knowledge, the current SL operations focus on

fusing beliefs or exploiting belief for inference. This work

is concerned about how to update subjective beliefs from

observations. Implicity, SL provides the operations to update

beliefs when one of the possible assertions is completely

visible in the observation. In recent work, we expanded the

notions of SL to incorporate partial observations where the

assertions are only statistically related to the observations [5].

This work expands [5] by considering uncertainty in the

knowledge about the the statistical relationship between the

observations and the assertions.
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To make these notions a little more concrete, let us consider

a motivating example where one wants to understand the

criminal activity within a city. Specifically, one wants to

understand if a crime happens, what is the probability that the

crime occurs in any one of the districts. Without any initial

data, one might look at socio-economic factors to develop an

initial set of probabilities. Over time, one can log where a

crime occurs and start to use these observations to update the

probabilities. Clearly, as more observations are logged, the

certainty associated with the generated probabilities increases.

SL is well suited to infer the probabilities of a crime occur-

ring in the districts and the uncertainty associated to these

probabilities.

Now, let us assume that one is interested in where criminals

live. The question is now when a crime occurs, what is the

probability that the perpetrator lives in a particular district.

Like before, one can start with a prior set of probabilities based

upon the socio-economics factors. Furthermore, when a crime

occurs, the location of the crime is readily available in the

police report. However, the identity of the perpetrator may or

may never be discovered. Therefore, it is generally not possible

to log where the perpetrator lives. Sometimes, this information

can be determined with great likelihood when the criminal is

caught. Most likely, one only incorporates statistical models

that link the probability of where the perpetrator lives con-

ditioned on where a crime occurs. For instance, a criminal

may not operate in his/her immediate neighborhood where

he/she can easily be identified, and a criminal may not want

to venture too far away either. This contextual information can

help answer the questions of the distribution of criminals over

the various districts within a city. This scenario is an example

of a geospatial abduction problem (GAP) [6]. SL is suited to

tackle such applications, but the notions of how to incorporate

statistical (and not just hard) evidence of the appearance of

an assertion (the home district of a perpetrator) need to be

developed within the SL framework.

SL is a probabilistic logic for assigning and updating basic

belief assignments (BBA). Classic SL considers BBAs on a set

of mutually exclusive singletons [1], [2] to form an SL opinion.

The attractive feature of SL is that the multinomial opinion

has a one-to-one mapping with parameters of a Dirichlet dis-

tribution. Formally, the Dirichlet distribution is the conjugate

prior of the multinomial distribution. This means that it is the

natural distribution to represent knowledge about the weights
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associated to a loaded die after observing a number of dice

rolls. The parameters of the Dirichlet distribution encode the

results of the dice rolls. In essence, a SL opinion is formed

through a series of observations that equate to tabulating the

results of a number of independent rolls of the dice.

In [5], SL was expanded to handle the case that the result

of the die roll is not observed. Rather a partial observation

is provided that is the likelihood of a given die roll given

the features that are measured from some type of physical

sensor or a human generated report. The boldness1 that can

be expressed in the likelihood is a function of the quality of

information inherent in the measured features [7].

This paper expands SL further to accommodate the veracity

of the likelihood calculations themselves. For instance, the

likelihood calculations could be the result of learned dis-

tributions from a labeled training set, and the certainty in

reported likelihood values is a function of the number of

training samples and the similarity between the environmental

collections conditions for the training and testing data. Alterna-

tively, one may only be able to use heuristics to approximate

the likelihood. Finally, the reported likelihoods could come

from another source that may be intentionally obfuscating

the reported likelihoods to allow for the consumer to make

certain inferences but not allow the consumer to infer other

private information [8]. This work is the first step to rigorously

understand how SL should reason over uncertainty in the

reported likelihoods for a given partial observation.

This paper is organized as follows. Section II reviews belief

updates in SL for fully visible observations, and Section III re-

views the expansion of SL to incorporate partial measurement.

Then, Section IV expands SL further to incorporate uncertainty

in the likelihood values. Simulations demonstrate the potential

utility of incorporating knowledge about the likelihood uncer-

tainty in Section V. Finally, Section VI provides concluding

remarks.

II. SUBJECTIVE LOGIC

SL is a probabilistic logic to represent one’s belief in a set of

K mutually exclusive assertions and the uncertainly in these

beliefs [1]. Formally, SL considers a frame of K mutually

exclusive singletons by providing a belief mass bk for each

singleton k = 1, . . . , K and providing an overall uncertainty

mass of u. These K +1 mass values are all non-negative and

sum up to one, i.e.,

u+
K
∑

i=1

bi = 1, (1)

s.t. u ≥ 0 and bi ≥ 0 for i = 1, . . . , K .

SL also includes a base rate probability ak for each singleton

and a non-informative prior weight W . The collection of

all the parameters forms the multinomial opinion. The base

rate values represent initial (or prior) information about the

probability of a singleton emerging for any given observation.

1By boldness, we mean the degree for which the likelihood of one class
(or singleton) is larger than that of the other classes.

The inclusion of the belief and uncertainty values along with

the base rates and non-informative prior weight represent the

accrued evidence regarding the probability of any singleton

appearing in an observation. Specifically, these values map

to a Dirichlet distribution for the possible probability mass

function (pmf) that is controlling how singletons appear in

observations. The parameters of the Dirichlet distribution α2

are related to the multinomial opinion values via

αk =
Wbk
u

+Wak. (2)

Likewise, using (1), solving for bk and u in (2) for k =
1, . . . , K , leads to the mapping of α to the multinomial

opinions

u =
W

∑K

i=1 αi

, (3a)

bk =
u

W
(αk −Wak). (3b)

Note that a binary logic is a special case known as binary

opinions, where the size of the frame is K = 2.

The Dirichlet distribution represents the probability dis-

tribution of the singleton likelihood probabilities pk. The

Dirichlet distribution with parameters α for the probability

mass function (pmf) p is

fβ(p|α) =

{

1
B(α)

∏K

i=1 p
αi−1
i for p ∈ S,

0 otherwise,
(4)

where

B(α) =

∏K
i=1 Γ(αi)

Γ
(

∑K

i=1 αi

)

is the multinomial Beta function and the unit simplex S =
{p|∑K

i=1 pi = 1} is the set of admissible values of p. For

K = 2, the Dirichlet distribution is equivalent to the beta

distribution. The values for the αi’s relative to each other

are equivalent to the expected value of p for the Dirichlet

distribution, i.e.,

p̂k =
αk

∑K

i=1 αi

. (5)

When the Dirichlet distribution represents the posterior, p̂

represents the minimum mean square error (MMSE) estimate

of the ground truth appearance probabilities given the obser-

vations that form the beliefs. Thus, (2), (3), and (5) lead to

the mapping of beliefs, uncertainty, and baseline rates to the

MMSE estimates for the appearance probabilities as given by

p̂k = bk + uak. (6)

The Dirichlet distribution peaks near its mean value (5).3 The

scaling of the Dirichlet parameters,

s =

K
∑

i=1

αi, (7)

2A boldface term x is a vector whose k-th element is xk .
3As the Dirichlet precision increases to infinity, the peak and mean become

arbitrarily close to each other.
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represents the “spread” or variance of the Dirichlet distribution

around its peak. Equivalently, it represents the strength in the

confidence of the mean (or the MMSE estimate) to charac-

terize the actual ground truth for p. This value is commonly

referred to as the precision parameter. As s increases, the peak

becomes higher and narrower. In the limit, as s → ∞, the

Dirichlet converges to a Dirac delta function. Clearly by (3a),

the precision value is inversely proportional to uncertainty.

The fusion of two subjective opinions consists of mapping

opinions into the Dirichlet parameters, summing up the param-

eters while taking into account not to double-count the baseline

rates, and then mapping back into the multinomial opinion

space [2]. This method for fusing implies that subjective

opinions are formed by observations that increment the Dirich-

let parameters so that fused opinions account for all these

observation increments. When the observation is the singleton

that appears, the updates in SL are clear. Since the singleton

appearance is drawn from the multinomial distribution, and the

current belief is represented by a Dirichlet distribution, which

is the conjugate prior of the multinomial, the posterior is also

Dirichlet. When the k-th singleton is observed to appear, then

the parameters for the updated Dirichlet distribution is known

to be

α+ = α+ ek, (8)

where ek is the indicator vector whose k-th element is one and

whose other elements are all zero. Then a+ can be inserted

into (3) to obtain the updated beliefs b+ and u+. Overall,

a multinomial opinion is formed by simply counting the

occurrences of singletons to maintain the Dirichlet parameters,

and equivalently, the multinomial opinion values. Typically,

the prior weight W = 2. It represents the strength of the prior

in influencing updated beliefs relative to the observation.

The many operations that exist in SL for multinomial or just

for binary opinions are not completely amenable to a mapping

to the Dirichlet distribution in the sense of fusion and updates

from observations. One example is the “and” or multiplication

operation for binary opinions [9]. SL is a tractable framework,

but it approximates belief propagation via parameters of a

Dirichlet distribution. For any operation in SL, the operands

are assumed to follow the Dirichlet distribution. A Dirichlet

distribution is fitted to the output of the operation in a manner

that preserves the mean. However, to maintain the properties

of SL, the variance is approximated. In essence, the values of

αk’s relative to each other are maintained. However, the sum

of the αk’s is approximated. By (3a), the Dirichlet precision

is inversely proportional to the uncertainty. These principles

for handling mathematical operation in SL are used in the

next two sections to add the measurement likelihood update

operation into the SL framework.

III. MEASUREMENT UPDATES FOR SL

Usually, it is not possible to update beliefs in singletons

by directly observing the singletons in an event. Rather, a

measurement of the event is made that is statistically related

to the occurrence of the singleton. The measurement forms

a feature vector x ∈ R
d. An observer transforms the feature

vector in a likelihood vector that represents how likely the

feature vector was caused by the occurrence of each of the

singletons (or classes) in the frame. Either the observer does

this by experience or it employs assistance from computational

classifiers that learn how to represent the likelihood from a

set of training data. In either case, one assumes that in this

section, the observer or classifier is able to determine the

correct likelihoods for each class, which is simply the value

of the conditional distributions corresponding to the feature

vector x, i.e.,

li = f(x|z = i), (9)

where f(·|z = i) is the probability density function (pdf) for

the measured features conditioned on the appearance of the i-
th class where 1 ≤ i ≤ K . In [5], the SL belief update method

for partial observations that are reported as class likelihoods

was developed. This section reviews that development.

A. Naı̈ve Belief Update

The naı̈ve approach for the partial observation update is

to spread the mass of the Dirichlet update in (8) via the

normalized likelihood

l̃k =
lk

∑K

i=1 li
. (10)

so that

α+
k = αk + l̃k. (11)

For the case of a visible update where the value of z is known,

i.e., l = ei, then (11) simplifies to (8). While this naı̈ve

approach can be viewed as a generalization of the visible

observation update, it does not yield a posterior Dirichlet

distribution that is a good fit to the actual posterior distribution

of the observation probabilities p.

B. Likelihood Update to Approximate the Posterior

The likelihood update determines the posterior observation

probabilities p given the current subjective opinion and mea-

surement. Then one fits a Dirichlet density to the posterior

in order to approximate the updated subjective opinion. This

derivation starts with the joint pdf of the feature, i.e., the partial

observation, and the observation probabilities conditioned on

the current multinomial opinion, which is

f(x, z = i,p|α) = f(x|z = i)prob(z = i|p)fβ(p|α),

= lipifβ(p|α). (12)

Then marginalization to remove the hidden variable z leads to

f(x,p|α) =

(

K
∑

i=1

lipi

)

fβ(p|α), (13)

so that the posterior for the observation probabilities after the

measurement update is

f(p|α,x) =

(

K
∑

i=1

αi

)

(

∑K

i=1 lipi

)

fβ(p|α)
(

∑K
i=1 liαi

) . (14)
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Note that (14) is invariant to the scaling of the likelihood.

When l = ek, i.e, the likelihood is zero for all classes

except for the k-th class, then (14) simplifies to the Dirichlet

distribution fβ(p|α + ek), which means that the observation

of the target class is fully observable. On the other hand, when

all classes have equal likelihoods, i.e., l = 1,4 (14) simplifies

to fβ(p|α), which means the updated beliefs are equivalent

to the previous belief. In other words, the measurement is

vacuous for the case of equal likelihoods. Clearly, the naı̈ve

approach given by (11) is not properly updating beliefs for the

vacuous case.

The next step is to approximate the posterior by the Dirichlet

distribution. The following theorem helps to determine the best

Dirichlet approximation of the posterior.

Theorem 1. For a Dirichlet distribution and the posterior

distribution given in (14) to exhibit identical first order mo-

ments and to to exhibit an identical second order moment for

the marginal of the k-th element, then the parameters of that

Dirichlet distribution are given by

α̃k = s+k

αk + αklk∑
K
j=1 ljαj

1 +
∑K

j=1 αj

(15)

for k = 1, . . . , K , where the precision is

s+k =
1 +

∑K

j=1 αj

1 +
(2+

∑
K
j=1 αj)

(
∑

K
j=1 αj lj)((1+ᾱk)l

−1
k

+(1+αk)l̄
−1
k )

, (16)

ᾱk =
∑

i6=k

αi, and l̄k =
1

ᾱk

∑

i6=k

αili. (17)

Proof: See Appendices A and B in [5].

Note that ᾱk and l̄k represent the total Dirichlet precision

and average likelihood, respectively, associated to the com-

plement of the k-th singleton in the frame. When K = 2, it

is easy to verify that s+1 = s+2 , because l̄1 = l2, ᾱ1 = α2,

l̄2 = l1, and ᾱ2 = α1. In general, s+k 6= s+j for k 6= j, and

it not possible to select the precision so that all the second

order moments of the Dirichlet approximation match those of

the posterior. In any event, the larger the updated precision,

the larger the updated Dirichlet parameters (see (7)).

As shown in [5], selection of even the largest value of s+k as

the updated precision will usually lead to the fact that one or

more of the updated parameters actually decrease in value. At

best, the smallest change in the updated parameters is zero.

Before the update of too many observations, it is possible

that the decrease in one of the parameter values leads to a

negative subjective belief (see (3b)). In [5], this issue was

avoided by selecting the precision to be large enough to avoid

any decrease in the updated Dirichlet parameters. However,

we have since discovered that a larger than necessary precision

unnecessarily thwarts the influence of new observations. Better

performance is obtained by only increasing the magnitude of

4
1 is the vector whose elments are all one.

the precision to avoid negative subjective beliefs. Thus, the

updated Dirichlet parameters are

α+
k = s+mk, (18a)

mk =
αk +

αklk∑
K
j=1 ljαj

1 +
∑K

j=1 αj

, (18b)

s+ = max







1

K

K
∑

j=1

s+j ,
Wak
mk







, (18c)

where s+k is given by (16). Algorithm 1 summarizes the

likelihood update process for SL multinomial opinions.

Algorithm 1 Likelihood update for SL

Input: SL Multnomial opinion and likelihood l

Output: Updated SL multinomial opinion

1) Transform multinomial opinion into Dirichlet parame-

ters via (2).

2) Update Dirichlet parameters via (16) and (18).

3) Convert updated Dirichlet parameters into updated

multinomial belief via (3).

It is shown in [5] that the increase in precision is bounded,

i.e., 0 ≤ s+ − s ≤ 1. The lower bound occurs for the

vacuous case where l = 1. In essence, likelihood provides

no information, and by (18), the subjective belief remains

unchanged, i.e., α+ = α. The upper bound occurs for the fully

observable case when l = ek where the likelihood means the

the feature values indicate without a doubt that the k-th class

was observed. Then, the k-th Dirichlet parameter increments

by a one while other parameters remain the same. These two

cases represent the largest and smallest entropy values for

the likelihood. As demonstrated in [5], as the entropy of the

likelihood decreases, i.e., the likelihood is bolder in espousing

a given class, the corresponding observation is increasing the

precision of the updated Dirichlet parameters and lowering the

uncertainty of the updated subjective belief.

IV. UNCERTAIN LIKELIHOOD UPDATES

This sections considers how to modify the belief update

in (18) when the likelihood is reported with some degree

of uncertainty. In practice, the likelihood calculated by an

observer is not completely accurate as discussed in the in-

troduction. For the remainder of the paper, it is convenient to

collapse the likelihood onto the unit simplex S. In (18), the

likelihood l encodes the observation x as a K-dimensional

vector. In fact, the magnitude of the likelihood vector provides

no information as (18) is invariant to scalings of l. Thus,

a partial observation can be summarized as the normalized

likelihood vector l̃ (see (10)). As long as the normalized

likelihood is correctly calculated, one’s belief can be properly

updated. For the remainder of the paper, we will use the term

likelihood to actually refer to the normalized likelihood for

the sake of brevity. The assumption made in this section is

568



that the distribution of the reported likelihood l̃r conditioned

on the latent actual likelihood l̃, i.e., f(l̃r|l̃), is known, and

uncertainty is expressed as the “spread” of this distribution.

Furthermore, it is assumed that the reported likelihood con-

ditioned on the actual likelihood is independent of the class

appearance z and the appearance probabilities p, i.e.,

f(l̃r|l̃, z,p) = f(l̃r|l̃). (19)

Given this distribution, this section outlines how to compute

the posterior distribution of the appearance probabilities given

the reported likelihood.

To compute this posterior distribution, the following theo-

rem is useful.

Theorem 2. The distribution of the true likelihood conditioned

on the latent class appearance satisfies the following identity

f(l̃|z = i) = g(l̃)l̃i,

where

g(l̃) =

K
∑

i=1

f(l̃|z = i).

Proof: Consider the set of observations whose true like-

lihood is l̃, i.e.,

X (l̃) =
{

x : f(x|z=i)
∑

K
k=1 f(x|z=k)

= l̃i, for i = 1, . . . , K
}

.

Now,

f(l̃|z = i) =

∫

X (l̃)

f(x|z = i)dx,

=

∫

X (l̃)

(

K
∑

k=1

f(x|z = k)

)

l̃idx,

= l̃i

K
∑

k=1

∫

X (l̃)

f(x|z = k)dx,

= l̃ig(l̃).

The theorem states that the distribution of the likelihood

given a specific class appearance is simply a scaled version

of the likelihood of that class. If the the observable is the

likelihood and not the observation x, then f(l̃|z = i) replaces

f(x|z = i) in (12). In essence, the theorem states that the

posterior distribution of p conditioned on the likelihood is

exactly the same as the posterior distribution conditioned on

x since f(l̃|z) is simply scaled version of the likelihood. In

other words, the likelihood contains the same discriminative

information as x.

The scalar multiplier g(l̃) in inconsequential when the re-

ported likelihood is known to be the true likelihood. However,

for the more practical and general case that the observed

reported likelihood is only statistically dependent on the true

likelihood, then this multiplier term does affect the posterior

distribution as will be seen. This multiplier encodes the phe-

nomenology of how the likelihood is generated. If the belief

update is based upon the output of a classifier, the observer

updating his/her belief must understand the distributions of

the features used by the classifier, i.e., x conditioned on the

appearance states z. In most cases, the observer will not

have a more accurate understanding of these distributions as

the classifier. Therefore, in most cases g(l̃) is unknown to

the observer. It is reasonable to consider the non-informative

multiplier g(l̃) = 1 when the observer does not have access

to the phenomenology of how the features x relate to z. In

the remainder of the paper, the use of the correct value for

g(l̃) means that the feature/class likelihood model is employed.

When the likelihood model is not utilized, g(l̃) is set to one.

As will be seen in the simulations section, the shape of g(l̃)
changes greatly if the classes are well separated or not in the

feature space.

The observable is actually the reported likelihood, which

statistically depends only on the true likelihood (see (19)).

Likewise, the true likelihood depends only on the class appear-

ance z, and the class appearance depends on the appearance

probability. In short, the joint probability of all quantities is

f(l̃r, l̃, z,p|α) = f(l̃r|l̃)g(l̃)lzpzfβ(p|α). (20)

Through marginalization of the latent terms l and z, the

posterior distribution of p given the reported likelihood is

proportional to

f(l̃r,p|α) =

(

K
∑

z=1

l̆zpz

)

fβ(p|α), (21)

where

l̆z = f(l̃r|z) =
∫

S

f(l̃r|l̃)g(l̃)l̃zdl̃ (22)

is the class likelihood of the reported likelihood. Comparing

(13) with (21), it clear that l̆ replaces the role of l. In other

words, the computation of the belief updates for a reported

likelihood constitutes the transformation of the reported like-

lihood via (22) into an effective likelihood for insertion into

the update equations.

To illustrate the general report model, we consider models

for f(l̃r|l̃) that simply represent that the reported likelihood

is an estimate of the actual likelihood within a given level of

uncertainty ur. The uncertainty value ur is a number between

zero and one. Specifically, the reported likelihood is treated

as a sample from the Dirichlet distribution with parameters
W
ur
l̃. Thus, the conditional mean is the true likelihood. As

ur → 0, the conditional distribution approaches a Dirac delta

function centered on the true likelihood. As ur increases, the

“spread” of the distribution increases. The transformation of

the reported likelihood to the effective likelihood requires a

K-1 dimensional integration in (22). At this time, we do

not know if the employment of a Dirichlet form for the

conditional distribution affords a closed form formula for

the transformation that circumvents the need for numerical

integration.

In this paper, the transformation in (22) is accomplished via

numerical integration. Thus, the paper investigates the binary
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K = 2 case. Then the normalized effective likelihood is given

by

˜̆
l =





h1(l̃r)

ha(l̃r)

1− h1(l̃r)

ha(l̃r)



 , (23)

where

h1(l̃r) =
∫ 1

0
(l̃r,1)

W
ur

y−1
(l̃r,2)

W
ur

(1−y)−1

B([ W
ur

y, W
ur

(1−y)]T )
g∗(y)ydy, (24a)

ha(l̃r) =
∫ 1

0
(l̃r,1)

W
ur

y−1
(l̃r,2)

W
ur

(1−y)−1

B([ W
ur

y, W
ur

(1−y)]T )
g∗(y)dy, and(24b)

g∗(y) = g([y, 1− y]T ). (24c)

Algorithm 2 summarizes the process to update an SL

multinomial opinion using an uncertain reported likelihood.

Algorithm 2 Uncertain likelihood update for SL

Input: SL multinomial opinion, reported likelihood lr, and

feature/class likelihood model g(l̃)
Output: Updated SL multinomial opinion

1) Normalize reported likelihood via (10).

2) Transform normalized reported likelihood into effective

likelihood via (22) using numerical integration.

3) Update SL opinion via Algorithm 1 using the effective

likelihood.

V. SIMULATIONS

This section uses simulations to compare various methods

to update SL beliefs to demonstrate the utility of compensating

for the uncertainty associated to the reported likelihoods. The

simulations consider a simple exemplar case where the features

are x ∈ R
K . For each observation, the appearance of a given

class is drawn from a multinomial distribution p. Given the

appearance of the k-th singleton, the feature vector represents

a sample from a Gaussian distribution with mean ek and

covariance σ2I , i.e.,

f(x|z = k) =
1

(
√
2πσ2)K

exp

{

− 1

2σ2
‖x− ek‖2

}

. (25)

Once the feature vector is generated, the class likelihood is

computed via (9) and normalized to generate the ground-

truth values l̃. Then, the reported likelihood is drawn from

a Dirichlet distribution with parameters W
ur
l̃ to simulate the

output of the classifier. Note that in the feature space, the

distances between the clusters representing the K classes, e.g.,

Mahalanobis distance between class centroids, are all equal.

In the simulations, the number of classes is K = 2.

The σ2 parameter controls the separability of the classes

in the feature space. When σ2 is small, the classes are well

separated. This means that the true likelihoods are usually

bold, i.e., only one element of l̃ is large. As σ2 grows, the

class separability decreases. Given the model used in these

simulations, the g(l̃) term can be calculated analytically (see
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Figure 1. The estimated g(l̃) distributions and polynomial fits to those
estimates when the class spreads are (a) σ2 = 0.25, (b) σ2 = 1, and (c)
σ2 = 2.25.

proof of Theorem 2), but this calculations is difficult. Instead,

the term is computed numerically via Monte Carlo simulations

where 10,000 simulated true likelihoods are generated when

the class appearance probabilities are all equal. The histogram

of likelihood values is used to estimate g(l̃). Figure 1 shows

the estimated g(l̃) for σ2 = 0.25, 1, and 2.25, respectively. The

figure also plots polynomial fits to the estimated g(l̃). The

polynomial fits represent the feature/class likelihood models

that are used in the numerical integration of (24). Since K = 2,

the likelihoods are uniquely represented by the first element

l̃1 since l̃ = [l̃1, 1 − l̃1]
T . It is clear in the figure that as the

the class separability decreases, the mass in the histograms

migrate from the edges, i.e., bold likelihoods, to the center,

i.e., vacuous likelihoods. Clearly, the shape of g(l̃) is sensitive

to the class separability in the feature space. The polynomial

approximations to the histograms are used in the likelihood

transformation calculations in the remainder of this section

when the feature/class likelihood models are employed.

The class separability affects the transformation of the

reported likelihood to the effective likelihood in (22) (and

(24) for K = 2). Figure 2(a) plots this transformation of

the reported l̃r = [.9, .1]T over the full ranges of likelihood

uncertainties ur for the three class separability models. The

figure also plots the transformation when the model is ignored.

For all cases, as uncertainty increases, the entropy of the

effective likelihood vector increases. As demonstrated in [5],

an increase in entropy of the likelihood vector leads to lower

increase in the Dirichlet strength (or SL uncertainty) in the

updated belief. Figure 2(b) shows the updated SL uncertainty

u when the prior SL belief is b1 = b2 = 0.45, u = 0.1
with an uniform baseline of a1 = a2 = 0.5. Clearly, as

the entropy of the effective likelihood increases (or its largest
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Figure 2. The effectiveness of a likelihood report of l̃r = [0.9, 0.1]T

when employing and not using the feature/class model for various values of
likelihood uncertainty ur : (a) Effective likelihood values, and (b) updated SL
uncertainty when prior SL opinion is [b1 = b2 = 0.45, u = 0.1, a1 = a2 =
0.5].

element decreases), the reduction in entropy from an initial

value of 0.1 decreases. When the class separability is large,

the increase in entropy of the effective likelihood as likelihood

uncertainty increases is slower than when class separability is

smaller. This means that for a given likelihood uncertainty,

the larger class separability model creates a larger decrease

in the updated SL uncertainty as shown in Figure 2(b). It is

interesting to note that ignoring the feature/class separability

model, i.e., assume g(l̃) = 1, provides similar behavior in

the likelihood transformation as for the moderate separability

model of σ2 = 1.

The simulations compare five different possible SL belief

update methods. First, the clairvoyant method uses the actual

likelihood to perform the update via Algorithm 1. Because the

true likelihood is used, this method serves as the unrealizable

gold standard. The other methods process the reported likeli-

hoods. The uncertainty compensation with likelihood model

method performs Algorithm 2 using the true (polynomial

approximation) of g(l̃). Likewise, the uncertainty compensa-

tion without the likelihood model performs Algorithm 2 with

g(l̃) = 1. The standard method from [5], i.e., Algorithm 1,

assumes certainty by treating the reported likelihood as the true

likelihood. Finally, the naı̈ve method also assumes certainty

but performs the update via (11). These five methods were

evaluated over each of three feature/class models and over

three levels of reported likelihood uncertainty (ur = 0.01, 0.1,

or 1). For each of the nine feature/reported likelihood model

combinations, the SL beliefs are updated one likelihood report

at a time in the order of the received reports over 300 obser-

vations. Initially, the beliefs b are zero so that α = [1, 1]T ,

and the process is repeated over 1000 independent traces. For

all these simulations the class appearance probabilities are

p = [2/3, 1/3]T .

The performance results averaged over the 1000 indepen-

dent traces are provide in Figure 3. The figure shows plots of

the expected appearance probability for the first class appear-

ance p̂1 (see (6)) as a function of the number of partial obser-

vations that have been integrated. Note that since K = 2, the

relative results for the second class appearance probability are

exactly the same. As one would expect, the clairvoyant method

always converges close to the true appearance probability of

p1 = 2/3. The naı̈ve method never works, and the standard

method (no uncertainty compensation) only converges to the

true appearance probability when the likelihood uncertainty is

small, i.e., ur = 0.01. In fact, when the likelihood is small,

all the methods but the naı̈ve work just about equally well.

This is because the reported likelihood is always very close to

the true value. Usually, the standard method does not perform

as well as the uncertainty compensation methods for larger

uncertainty.

Uncertainty compensation using the correct feature/class

separability is almost as effective as the clairvoyant method.

Effectively, its performance tracks the performance of the

clairvoyant method expect when the class separability is

poor, i.e., σ2 = 2.25 and the likelihood uncertainly is high,

i.e., ur = 1. Even in that case, the feature/class model

based method is able to converge to the correct solution,

but at a slower rate that the clairvoyant method. The slower

convergence is due to the deep discounting of the boldness

of the reported likelihood in the likelihood transformation

(see Figure 2). Uncertainty compensation does not uniformly

perform as well when it ignores the feautre/class model. It is

usually better than no compensation at all. For moderate class

separation, i.e., σ2 = 1, its performances with and without

the model are about the same as expected from Figure 2. For

good class separation, i.e., σ2 = 0.25, the no model method

overcompensates the effective likelihood relative to the model

method, and its expected appearance probability converges

to a value slightly larger than p1 = 2/3. On the other

hand, when the class separation is poor, i.e., σ2 = 2.25, the

no model method undercompensates the effective likelihood,

and the expected appearance probability converges to a value

slightly lower than p1 = 2/3. The undercompensation when

ignoring the model is better than no compensation at all as the

standard methods underestimates the probability more than the

no model uncertainty method.

VI. CONCLUSIONS

The paper extended SL to incorporate partial observations

when the reported class likelihoods are considered uncertain.

The extensions is based upon approximating the results of

the Bayesian update. Specifically, the current subjective belief

corresponds to an equivalent Dirichlet distribution for class ap-

pearance probabilities. The reported class likelihood is treated

as the observation, and the exact form for the posterior dis-

tribution is determined for the class appearance probabilities.

Finally, the updated SL opinion corresponds to the parameters

of a Dirichlet that best approximates the posterior by capturing

the same same mean values while approximating the variances.

This work build upon earlier research that determined how true

class likelihood values should update the SL opinions. It turns

out that considering the uncertainty of the reported likelihoods

is equivalent to transforming the reported likelihoods into an

effective likelihood, which then updates the SL opinions by

the true likelihood update equations from the earlier work.
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Figure 3. Expected appearance probability p̂1 when the true probability
is p1 = 2/3 versus number of partial observations for various SL update
methods over three feature/class models and three reported likelihood un-
certainty models: (a) σ2 = 0.25, ur = 0.01, (b) σ2 = 0.25, ur = 0.1,
(c) σ2 = 0.25, ur = 1, (d) σ2 = 1, ur = 0.01, (e) σ2 = 1, ur = 0.1,
(f) σ2 = 1, ur = 1, (g) σ2 = 2.25, ur = 0.01, (h) σ2 = 2.25, ur = 0.1,
and (i) σ2 = 2.25, ur = 1.

Simulations demonstrated the effectiveness of the uncer-

tainty aware update method. Actually, the uncertainty aware

method requires model knowledge of how the likelihoods

are generated from the actual appearances of the classes. In

other words, the exact method requires knowledge of the

statistical distribution of the observed features conditioned on

the latent class appearance to determine the typical distribution

of likelihood values. Another uncertainty aware method is

proposed that ignores this feature/class model. The simulations

show that ignoring the model can affect performance in

terms of inferring the underlying appearance probabilities.

However, even when ignoring this model, uncertainty aware

compensations is usually better and never worse than taking

the reported likelihood values as truth.

It would be interesting to determine if some rudimentary

knowledge about the class separability afforded by the features

can help in the transformation of the reported likelihood

into the effective likelihood. In effect, knowledge of good

class separability should simply retard the increase in the

entropy of the effective likelihood as likelihood uncertainty

increases. Conversely, knowledge of poor class separability

should accelerate the increase in the entropy of the effective

likelihood as likelihood uncertainty increases. Furthermore, the

robustness of the uncertainty aware updates should be studied

in terms of how well they maintain performance when the

assumed model that generates the reported likelihood model

does not match the actual model. Future work also needs

to consider more efficient processing methods that avoids

a K − 1-dimensional numerical integration. Finally, we are

interested in understanding how intentional obfuscation of the

true likelihood can control the inferencing performance of SL.
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